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ABSTRACT

A single electrostatic wave in a magnetoplasma causes stochastic ion
motion in several physically different situations. Various magnetic fields
(uniform, tokamak, and mirror) and various propagation angles with respect
to the field have been studied. A brief review of this work shows that all
situations can be understood using the concept of overlapping resonances.
Analytical calculations of the wave amplitude necessary for stochasticity
have been carried out in some cases and compared with computer and
laboratory experiments. In the case of an axisymmetric mirror field the
calculations predict stochastic motion of ions with energy below a threshold
that depends weakly on the wave amplitude and on the scale lengths of the
magnetic field. Studies with an azimuthally asymmetric field show that the

asymmetry causes substantial changes in the motion of some ionms.



1. INTRODUCTION
Considerable study has been devoted to a class of stochasticity

problems.l-7

For these problems one asks the question, "In a

magnetoplasma what effect on particle motion does a single electrostatic
wave have?" The answer, of course, is that the wave causes stochastic
motion of a certain group of particles. Characterizing this group generally
provides information useful for a practical application. One can obtain
this characterization, for all of the problems discussed in this paper,
using the concept of overlapping resonances.8 The physics of thé

resonances differs importantly from one problem to another, which leads to
different characterizations of the stochastically moving particles.

In this paper I briefly discuss, in Sec. 1I, the various problems,
emphasizing the physics of each problem and describing the group of
particles that moves stochastically. In Sec. III I summarize the results of
a detailed study7 of ion motion in the presence of a wave in an
axisymmetric mirror machine. Finally, in Sec. IV I describe a model
appropriate for studies of ion motion in an azimuthally asymmetric mirror

machine.
1I. PHYSICS OF THE VARIOUS PROBLEMS

The first problem is that of ion motion in a uniform magnetic field B
with a perturbing wave that propagates either obliquely1 or

2,3

perpendicularly to B. The ion feels oscillating electric fields at

frequencies

W=k o +AR, L=0,*, #2, ..., ¢))

where w is the wave frequency, kzvz is the Doppler shift due to motion
along B, and © is the gyrofrequency. The different frequencies (1) enter
with weights given by the Bessel function J,(k; a), where k is the

perpendicular wavenumber and a is the gyroradius. For the weights to be
nonnegligible, we need k a 2 £; the important values of % are those that




make (1) smallest in magnitude, namely £ ~ w/. Thus, we find a necessary

condition for stochasticity due to overlapping cyclotron resonances:

kazw/o . (2)

Expressing (2) in terms of the perpendicular velocity v, , we have

v 2 wlk .

The ions that may move stochastically are thus those with sufficiently high
perpendicular energy.

In the second problem ions with negligible gyroradius (k; a << 1) move
stochastically in a tokamak magnetic field because the field stremgth B
varies with distance s along a field line.4 The ion feels the

electrostatic wave (e.g., a trapped-ion mode) at frequencies

WM o, n= 0, +1, +2, ...,

vhere Wy is the bounce (or transit) frequency of motion along field
lines. Since Wy approaches zero at the separatrix, the velocity-space
boundary between trapped and circulating ions, resonances w = nw, with
arbitrarily large values of n occur near the separatrix. Resonances with
adjacent values of n become extremely close together as n increases.
Consequently, due to overlap of these bounce resonances a wave of
arbitrarily small amplitude causes stochastic motion of trapped ions that
reflect sufficiently close to the point 8 nax where B is a maximum. An
analogous class of circulating ions also moves stochastically. These
results depend on the assumed magnetic-~field property (dzB/d32)3=smax £ 0.
The third problem treats the motion of ions with kja = ka 2 1 in the
magnetic field of an axisymmetric mirror machine.s'-7 In contrast to the
tokamak problem the shape of B(s) near 8ax 18 irrelevant, since, in a
mirror machine, most ions are near the surface on which B(s) is a minimum
rather than a maximum. Near the minimum we can assume a parabolic well,
B(s) = Bo(l + szle). The exact shape of the well is not important but the
fact that B varies with s, coupled with finite gyroradius ka 2 1, is crucial

~

to the physics of this problem. Because ka 2 1 the ion feels the

~

electrostatic wave, with a weight Jl(ka), at the frequency

W+ owy - o)

where wg is the (positive) Doppler shift kv, resulting from the VB-drift
Yy which is in the opposite direction from the (azimuthal) propagation
direction of the wave. The gyrofrequency Q(t) = (q/Mc) B[s(t)] varies about

an average value Q at twice the frequency Wy of bouncing between mirrors:



ae) = -Y% 2 cos .t .

The ion thus experiences a potential

#(t)

. .
<I>o Jl(ka) cos[f dt' (t') - (wD + wt

8, J,(ka) cos [(-E/Awb) sin 20

0 t + (5 - wD - w)t]

b

8y J;(ka) E Jp(ﬁmwb) cos [(@ - 2po, - wy -t] . (3)

p==

“p

In (3) we have retained only the £ = 1 term of a sum over £ that involves
Jz(ka), and we have suppressed initial phases of the bounce and cyclotron
motion since these phases are unimportant for the present discussion. From

(3) we see that the ion feels oscillating electric fields at frequencies

2 - 2pmb -~ Wy ~w 5 p= 0, +1, +2, ... . (4)

The Bessel functions Jp, which play the roles of weighting functions in
(3), can be expressed in terms of the parallel and perpendicular kinetic
energies Wy and W, these energies being measured at the midplane (s = 0) of

the mirror machine. The argument of Jp is

W" LQO
a , (5)
L w172
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where M is the ion mass, L is the axial scale length of the magnetic field,
and QO is the ion gyrofrequency at the midplane. A necessary condition

for stochastic motion due to overlap of resonances with adjacent values of p

is

Q
4“5 21 . (6)
Relations (5) and (6) allow us to characterize the class of stochastically
moving ions. These ions must have sufficiently low perpendicular energy LI

the required value of W, decreasing as W“/Wl decreases. Note that
W = (s, 1)
ItF 7L tp !

where stp is the turning-point distance, at which the ion reflects from

the mirror. The result that low-energy ions move stochastically is also

found in a more complete calculation, which is described in the next section.



ITI. RESULTS ON STOCHASTICITY IN AN AXISYMMETRIC MIRROR MACHINE

A detailed treatment of stochasticity due to a wave in an axisymmetric
mirror machine is available.7 In this section I summarize the results of
Ref. 7, which includes comparisons between theory and computer and
laboratory experiments.

Theoretical work on stochasticity due to a wave in a mirror-machine
plasma is motivated by data from the 2XIIB experiment at Lawrence Livermore
Laboratory.9 Measurements of electric potential fluctuations suggest that
a single wave, which grows to large amplitude as an instability, propagates
azimuthally in the plasma. The wave is described by a frequency v and a
wavenumber k that are unique and time independent.

Reference 7 studies the slab-model problem motivated by the 2XIIB

experiment. An ion moves in a magnetic field
- 2, 2 - 2,"
B(x,z) = By[(1 + 27/L" + x/R)z - (2xz/17)x] (7

where L and Rg are the axial and radial scale lengths of the field. The

motion is perturbed by an electrostatic wave with potential

¢ = ¢, cos (ky + wt) . (8)

The analytical work of Ref. 7 begins with a Hamiltonian describing
motion in field (7) and wave (8). Introduction of appropriate canonical

variables allows one to express the Hamiltonian in the form

HCE,u56,9) = H(u,3) + qgy I, (ka) };_j Jp(E/zmb) cos (€ - 2p8) ,
(9)

where (E,u) and ($,J) are conjugate pairs of variables. The
time-independent, two~degree-of-freedom Hamiltonian (9) represents a
considerable simplification from the original time-dependent problem of
three degrees of freedom. Considering each term of the sum on p separately,

we can reduce (9) to a set of pendulum Hamiltonians
2 ~
Kp(x,px) (px - po) G + qg, Jl(ka) Jp(Q/hwb) cos X , (10).

where Py and G, which depend on the integer p, give the location of
resonance p and the effective mass for motion near it., The widths of the
resonances follow immediately from (10). The finite-width resonances are
illustrated in Fig. 1 for |p| < 2 and a set of parameters suggested by 2XIIB
data. Where adjacent resonances touch, we find points on the stochasticity
boundary. For points in the W"Wl plane below this boundary, ion motion is
stochastic; above the boundary, motion is nonstochastic or, in mirror-theory

terminology, superadisbatic.
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The predictions of the overlapping-resonances theory have been
verified by numerical calculations of ion trajectories in magnetic field (7)
and electrostatic wave (8). The trajectories separate into two classes as
shown in Fig. 2, in which the kinetic energy of the ion is plotted in time.
In Fig. 2(b) a low-energy ion shows the erratic, aperiodic behavior
associated with stochasticity. In Fig. 2(a) two superadiabatic
trajectories, both showing periodic variation of the kinetic energy, are
plotted. Of the two superadigbatic trajectories the lower—energy one
exhibits larger, slower excursions of the kinetic energy because in this
cage the ion motion is dominated by the p = -1 resonance; the higher-energy

trajectory shows smaller, faster excursions because the ion is near none of

the resonances.

(a)
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Fig. 2. Plots of kinetic energy

> 15+ 4 versus time for the two types of
&,’ /\/\/\/\/\/\/\/\N\/\/\/\/\ ion trajectories: (a) super-
%12 adiabatic, and (b) stochastic.
g 6 o 4 Parameters are the same as in
E Fig. 1. At t =0, z =0 and

3 W /W = 0.25.
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Figure 3 illustrates the same three trajectories as in Fig. 2 by

plotting the ion position in the WIWL plane whenever the ion passes the

midplane z = 0. The superadiabatic trajectories, labeled 1 and 2, remain
near their initial points on the plot, while the stochastic trajectory,
labeled 3, visits regions of velocity space far from its initial point.
Comparison between the overlapping-resonances theory and the

trajectory calculations is shown in Fig. 4. From results like those in
Figs. 2 and 3, the numerically determined stochasticity boundary is drawn
using a solid curve. From Fig. 1 theoretically determined points on the
boundary are plotted, and the points are joined by straight lines. The

third boundary, drawn with a dashed curve, is determined by applying a

100 ¥ ' UIIIII‘ o |‘T‘Ill|
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Fig. 4. Stochasticity boundaries

30 - in the W“Wl plane, computed by the
2 i method of overlapping resonances
Al: 10 Superadiabatic (curve connecting four points), by
= i the mapping method (dashed curve),
u

Stochastic and by numerical trajectory calcu-

lations (solid curve). Parameters

1 b gl

01 0.3 1 3 10 are the same as in Fig. 1.
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Fig. 5. Perpendicular energy wls

of an ion on the stochasticity

boundary as a function of wave
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amplitude @0.

Fig. 6. Perpendicular energy Wls

as a function of wave frequency w.
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slightly extended version of the mapping method used by Rosenbluth5 and by
Timofeev.6 In this method one reduces the equations of motion to the
standard mapping of Chirikov,8 for which the stochasticity boundary is
known from previous work.

After validation of the overlapping-resonances theory by comparison
with numerical trajectory calculations, the theory is used to determine how
the stochasticity boundary varies with parameters. In Figs. 5 and 6 are
shown the parametric dependences of wls’ defined as the value of Wl on the
stochasticity boundary at Wy = 2 keV. For these figures one parameter was
varied while the others were fixed at the values used in Figs. 1 through 4.
The variation of Wls with wave amplitude % is rather weak, as shown in
Fig. 5. In Fig. 6 we see how Wls varies with wave frequency w. The
dependences of wls on the magnetic-field scale lengths Rg and L are very
weak and are shown in Ref. 7.

The results of Ref. 7 force one to the following conclusion regarding
the 2XIIB experiment. If the theory models all of the important features of
the experiment, then in 2XIIB ions move stochastically if their
perpendicular kinetic energy is less than about 8 keV, and they move
supefadiabatically otherwise. Certain observations in 2XIIB apparently

contradict this conclusion, and motivation thus arises to improve the

theoretical model. Such an improvement is described in the next sectionm.




10
IV. MODEL FOR STOCHASTICITY STUDIES IN AN ASYMMETRIC MIRROR MACHINE

The slab-model magnetic field (7) used in Ref., 7 is a reasonable
description of an axisymmetric mirror machine. However, most mirror
experiments, including 2XIIB, involve a magnetic field with azimuthal
asymmetry due to a quadrupole component of the field. Breaking of the
azimuthal symmetry splits the frequencies (4) felt by an ion and leads to
the doubly infinite set

5-p'ab-ml)d—m ’ p',n=0, 11, 12’ L . (11)

In (11), wy is the azimuthal drift frequemcy, w, is the bounce frequency
averaged over the drift motion, and Q is the gyrofrequency averaged over
both the bounce and drift motion. The large number of resonances associated
with (11) seems likely to cause stochasticity more readily than in the
axisymmetric case.

A suitable model magnetic field islo

B(z,r,0) = f(z)z - r(}% f' - g cos 20)r - rg sin 26 6 , (12)

where g is a constant giving the strength of the quadrupole field and
f(z) = Bo(l + zz/Lz). Field (12) can be expressed as B = Vo x VB, where the

Euler potentials o and B are

o =% rzf(z) [cosh c(z) - cos 20 sinh c(2)]

B = tan"! {exp [c(2)] tan 8}

c(z) = (2gL/Bo) tan_l(z/L) .

Guided by theoretical results on mirror-machine microinstabilities, I

choose the model

¢(a,B,t) = 0 Am[R(a)] cos (mB + wt) (13)

0

for the potential due to the wave. In (13) ¢0 is a constant giving the

peak potential, the argument of Am is
R = (c;/oto)”2 .

where o, is the value of o at which the potential is greatest, the

0
"radial" shape function is

A () = (m+ Dx® (1 + m™ 1yt

and m is the azimuthal mode number.
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16
§ 14 Fig. 7. Plot of kinetic energy
{ versus time for an ion moving in a
§ quadrupole field of strength given
% 12 by gL/B0 = 2, The values of w,
'§ BO’ L, 00, and M are close to the
gi' values used for Figs. 1 through 4.

‘ The mode number m is 7, and
10 xy = alr = 7 cm, z = 0).

Ton trajectories in field (12) and wave (13) with the quadrupole-
strength parameter g equal to zero reproduce the results of Ref. 7. With
values of g comparable to those used in 2XIIB, we observe trajectories
qualitatively different from the g = 0 trajectories. For example, the
trajectory shown in Fig. 7 exhibits large, aperiodic excursions in the
kinetic energy between the relatively high values of 9 and 16 keV. We are
presently investigating the question of whether the quadrupole field alters
the stochasticity boundary found in Ref. 7.

This work was performed under the auspices of the U.S. Department of

Energy by the Lawrence Livermore Laboratory under contract number

W-7405-ENG-48.
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